Daugavet points and $\Delta $-points in Lipschitz-free spaces

نویسندگان

چکیده

We study Daugavet points and $\Delta $-points in Lipschitz-free Banach spaces. prove that if $M$ is a compact metric space, then $\mu \in S_{\mathcal F(M)}$ point only there no denting of $B_{\mathcal at distance

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest Points and Delta Convex Functions in Banach Spaces

Given a closed set C in a Banach space (X, ‖ · ‖), a point x ∈ X is said to have a nearest point in C if there exists z ∈ C such that dC(x) = ‖x − z‖, where dC is the distance of x from C. We shortly survey the problem of studying the size of the set of points in X which have nearest points in C. We then turn to the topic of delta-convex functions and indicate how it is related to finding neare...

متن کامل

Coincidence Points and Common Fixed Points for Expansive Type Mappings in $b$-Metric Spaces

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in $b$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone $b$-metric spaces cannot be obtained by the techniques using scalarization function....

متن کامل

On Best Proximity Points in metric and Banach spaces

Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...

متن کامل

Lipschitz - free Banach spaces

We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...

متن کامل

Numerical Reckoning Fixed Points in $CAT(0)$ Spaces

In this paper, first we use an example to show the efficiency of $M$ iteration process introduced by Ullah and Arshad [4] for approximating fixed points of Suzuki generalized nonexpansive mappings. Then by using $M$ iteration process, we prove some strong and $Delta -$convergence theorems for Suzuki generalized nonexpansive mappings in the setting of $CAT(0)$ Spaces. Our results are the extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2022

ISSN: ['0039-3223', '1730-6337']

DOI: https://doi.org/10.4064/sm210111-5-5